
F L E T C H E R T. P E N N E Y

M U LT I M A R K D O W N
U S E R ’ S G U I D E

Contents

MultiMarkdown User’s Guide 5

Introduction 9

Usage 15

Syntax 21

File Formats 47

Glossary 51

Abbreviations 53

MultiMarkdown User’s Guide

Version 6.6.0
Revised 2023-05-25

Contents

Introduction

MultiMarkdown is a superset of the Markdown1 lightweight markup 1 http://daringfireball.net/projects/
markdown/syntax with support for additional output formats and features.

What is Markdown?

To understand what MultiMarkdown is, you first should be familiar
with Markdown2. The best description of what Markdown is comes 2 http://daringfireball.net/projects/

markdown/from John Gruber’s Markdown web site:

Markdown is a text-to-HTML conversion tool for web writers. Mark-
down allows you to write using an easy-to-read, easy-to-write plain
text format, then convert it to structurally valid XHTML (or HTML).

Thus, “Markdown” is two things: (1) a plain text formatting syntax;
and (2) a software tool, written in Perl, that converts the plain text
formatting to HTML. See the Syntax page for details pertaining to
Markdown’s formatting syntax. You can try it out, right now, using the
online Dingus.

The overriding design goal for Markdown’s formatting syntax is
to make it as readable as possible. The idea is that a Markdown-
formatted document should be publishable as-is, as plain text, without
looking like it’s been marked up with tags or formatting instructions.
While Markdown’s syntax has been influenced by several existing
text-to-HTML filters, the single biggest source of inspiration for Mark-
down’s syntax is the format of plain text email. — John Gruber3 3 http://daringfireball.net/projects/

markdown/

What is MultiMarkdown?

Markdown is great, but it lacked a few features that would allow it to
work with entire documents, rather than just pieces of a web page.

I wrote MultiMarkdown in order to leverage Markdown’s syntax,
but to extend it to work with complete documents that could ulti-
mately be converted from text into other formats, including complete
HTML documents, LaTeX, PDF, and ODF.

In addition to the ability to work with complete documents and
conversion to formats beyond HTML, the Markdown syntax was

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/

10 fletcher t. penney

lacking a few other things. Michel Fortin added a few additional
syntax features when writing PHP Markdown Extra4. Some of his 4 http://www.michelf.com/projects/

php-markdown/extra/ideas were implemented and expanded on in MultiMarkdown, in-
cluding tables, footnotes, citation support, image and link attributes,
cross-references, math support, and more.

John Gruber may disagree with me, but I really did try to stick
with his proclaimed vision whenever I added a new syntax format
to MultiMarkdown. The quality that attracted me to Markdown the
most was its clean format. Reading a plain text document written in
Markdown is easy. It makes sense, and it looks like it was designed
for people, not computers. To the extent possible, I tried to keep this
same concept in mind when working on MultiMarkdown.

I may or may not have succeeded in this. . . .
In the vein of Markdown’s multiple definitions, you can think of

MultiMarkdown as:

1. A program to convert plain text to a fully formatted document.

2. The syntax used in the plain text to describe how to convert it to a
complete document.

Why should I use MultiMarkdown?

Writing with MultiMarkdown allows you to separate the content and
structure of your document from the formatting. You focus on the
actual writing, without having to worry about making the styles of
your chapter headers match, or ensuring the proper spacing between
paragraphs. And with a little forethought, a single plain text docu-
ment can easily be converted into multiple output formats without
having to rewrite the entire thing or format it by hand. Even better,
you don’t have to write in “computer-ese” to create well formatted
HTML or LaTeX commands. You just write, MultiMarkdown takes
care of the rest.

For example, instead of writing:

<p>In order to create valid

HTML, you

need properly coded syntax that can be cumbersome for

“non-programmers” to write. Sometimes, you

just want to easily make certain words bold

, and certain words italicized without

having to remember the syntax. Additionally, for example,

creating lists:</p>

http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/

multimarkdown user’s guide 11

should be easy

should not involve programming

You simply write:

In order to create valid [HTML], you need properly

coded syntax that can be cumbersome for

"non-programmers" to write. Sometimes, you just want

to easily make certain words **bold**, and certain

words *italicized* without having to remember the

syntax. Additionally, for example, creating lists:

* should be easy

* should not involve programming

[HTML]: http://en.wikipedia.org/wiki/HTML

Additionally, you can write a MultiMarkdown document in any
text editor, on any operating system, and know that it will be com-
patible with MultiMarkdown on any other operating system and
processed into the same output. As a plain text format, your docu-
ments will be safe no matter how many times you switch computers,
operating systems, or favorite applications. You will always be able
to open and edit your documents, even when the version of the soft-
ware you originally wrote them in is long gone.

These features have prompted several people to use MultiMark-
down in the process of writing their books, theses, and countless
other documents.

There are many other reasons to use MultiMarkdown, but I won’t
get into all of them here.

By the way — the MultiMarkdown web site is, of course, cre-
ated using MultiMarkdown. To view the MultiMarkdown (MMD)
source for any page, add .txt to the end of the URL. If the URL
ends with /, then add index.txt to the end instead. The main Mul-
tiMarkdown page, for example, would be http://fletcherpenney.net/
multimarkdown/index.txt.

What Are the Different Versions of MultiMarkdown?

The first real version of MultiMarkdown was version 2. It was a mod-
ification of the original Markdown.pl script. It worked fine, but was
slow when parsing longer documents. The plain text was converted
to HTML, and then XSLT was used to convert the HTML to other for-
mats (primarily LaTeX). Over time, maintaining the complicated nest

http://fletcherpenney.net/multimarkdown/index.txt
http://fletcherpenney.net/multimarkdown/index.txt

12 fletcher t. penney

of regular expressions became more difficult, and a better approach
was needed.

MultiMarkdown 3
5 (aka peg-multimarkdown) was built using 5 https://github.com/fletcher/peg-

multimarkdownJohn MacFarlane’s peg-markdown6 as a base. It was much faster than
6 https://github.com/jgm/peg-
markdownversion 2, and the underlying PEG (parsing expression grammar)

made things more reliable. There were still issues and limitations
(some inherited from peg-markdown, but most were my errors),
which lead to the development of version 4.

MultiMarkdown 4
7 was a complete rewrite, keeping only the PEG 7 http://github.com/fletcher/

MultiMarkdown-4and a few utility routines from MMD v3. This release fixed memory
leaks and other problems from earlier MMD releases; it is safe to use
in multithreaded applications and adds many new features.

MultiMarkdown 5
8 was mostly a restructuring of version 4, fol- 8 http://github.com/fletcher/

MultiMarkdown-5lowed by further incremental improvements.
MultiMarkdown 6

9 was a complete rewrite from the ground up. 9 http://github.com/fletcher/
MultiMarkdown-6The primary goals were:

• Improved performance – v6 uses a parser that was largely writ-
ten by hand, combined with a few pieces that are generated by
lemon10. This is vastly faster than the PEG parser of versions 3–5. 10 http://www.hwaci.com/sw/lemon/

There is probably still room to improve the code, but v6 is now
almost as fast as the fastest Markdown parsers out there, and pro-
vides more features.

• Improved accuracy and consistency – v6 uses an entirely new test
suite in order to ensure more consistent parsing across various
edge cases.

• New features – several features were added to v6, and several
were completely restructured to provide various improvements.

• The v6 QuickStart guide11 documents some of the changes in this 11 https://github.com/fletcher/
MultiMarkdown-6/tree/master/
QuickStart

latest iteration.

Where is this Guide Kept?

This guide has been rewritten with the following changes:

• The source is now in the gh_pages branch of the MultiMarkdown
project12. You can submit changes as a pull request, or by writing 12 https://github.com/fletcher/

MultiMarkdown-6me.

• You can access this information on the web at http://fletcher.github.io/
MultiMarkdown-5

• The source itself is a collection of MultiMarkdown text documents
that use the transclusion features to create a master document

https://github.com/fletcher/peg-multimarkdown
https://github.com/fletcher/peg-multimarkdown
https://github.com/fletcher/peg-multimarkdown
https://github.com/jgm/peg-markdown
https://github.com/jgm/peg-markdown
https://github.com/jgm/peg-markdown
http://github.com/fletcher/MultiMarkdown-4
http://github.com/fletcher/MultiMarkdown-4
http://github.com/fletcher/MultiMarkdown-4
http://github.com/fletcher/MultiMarkdown-5
http://github.com/fletcher/MultiMarkdown-5
http://github.com/fletcher/MultiMarkdown-5
http://github.com/fletcher/MultiMarkdown-6
http://github.com/fletcher/MultiMarkdown-6
http://github.com/fletcher/MultiMarkdown-6
http://www.hwaci.com/sw/lemon/
http://www.hwaci.com/sw/lemon/
https://github.com/fletcher/MultiMarkdown-6/tree/master/QuickStart
https://github.com/fletcher/MultiMarkdown-6/tree/master/QuickStart
https://github.com/fletcher/MultiMarkdown-6/tree/master/QuickStart
https://github.com/fletcher/MultiMarkdown-6/tree/master/QuickStart
https://github.com/fletcher/MultiMarkdown-6
https://github.com/fletcher/MultiMarkdown-6
https://github.com/fletcher/MultiMarkdown-6
https://github.com/fletcher/MultiMarkdown-6
http://fletcher.github.io/MultiMarkdown-5
http://fletcher.github.io/MultiMarkdown-5

multimarkdown user’s guide 13

from the individual source files. These documents can be viewed
in the browser as HTML, or downloaded as PDF or OpenDocu-
ment files.

Usage

Basic Command Line Usage

First, verify that you have properly installed MultiMarkdown:

multimarkdown --version

multimarkdown --v

To learn more about the command line options available:

multimarkdown --help

multimarkdown --h

To convert a file to HTML:

multimarkdown file.txt

To save the HTML to a file

multimarkdown file.txt > file.html

To convert to a different format:

multimarkdown -t latex file.txt

multimarkdown -t epub file.txt

Batch Mode

Batch mode allows you to convert one or more files in a single com-
mand, saving each file to a separate output file with a file extension
based on the output format (e.g. .html or .tex). This will overwrite
existing files.

multimarkdown -b file.txt file2.txt

Transclusion Only

You can output to the mmd format to perform file transclusion and
then output the raw MMD source before converting to another for-
mat:

multimarkdown -t mmd file.txt

16 fletcher t. penney

Convenience Scripts

There are several convenience scripts to batch convert to a specified
format:

mmd file.txt

markdown file.txt // Compatibility mode

mmd2epub file.txt

mmd2fodt file.txt

mmd2odt file.txt

mmd2opml file.txt

mmd2pdf file.txt // Convert to LaTeX and process to PDF

mmd2tex file.txt

Advanced Options

multimarkdown -f, multimarkdown --full

multimarkdown -s, multimarkdown --snippet

Control whether MultiMarkdown outputs a complete document or
just a “snippet”. A snippet includes just the section of text included
in the document. A full/complete document includes header in-
formation and other structure to form a complete HTML or LaTeX
document, for example. Additionally, if metadata is included (with
a few exceptions), MultiMarkdown will automatically produce a
complete document.

multimarkdown -c, multimarkdown --compatibility

Compatibility mode forces MultiMarkdown to create HTML that
matches the output of basic Markdown. In other words, it disables all
the new features added in MultiMarkdown.

There are a few exceptions, however. The original Markdown.pl
script used recursive regular expressions to perform parsing. This is
very flexible (though error-prone), but is extremely slow. MultiMark-
down v6 has a much faster parser, but there is one key limitation – it
parses in order and can’t look ahead indefinitely to see what might
be coming up. The main situations where this occurs is in handling
fenced code blocks (not a problem in compatibility mode, since they
don’t exist in Markdown) and in handling raw HTML. For more in-
formation on this, see https://github.com/fletcher/MultiMarkdown-
6/issues/135.

The other potential difference is that MultiMarkdown v6 has a
smarter strong/emphasis parser than Markdown.pl – it better handles
edge cases.

https://github.com/fletcher/MultiMarkdown-6/issues/135
https://github.com/fletcher/MultiMarkdown-6/issues/135

multimarkdown user’s guide 17

Because of these exceptions, there may be a few rare situations
where the output generated by MultiMarkdown v6 does not match
that by Markdown.pl. If you find what you believe to be a bug that
doesn’t fit one of these situations, please let me know and I’ll take a
look. The goal is to match the original Markdown output as much
as possible, but not to match the many bugs that are contained in
Markdown.pl.

multimarkdown --random

Normally MultiMarkdown assigns consecutive numbers to the
identifiers used for footnotes, citations, etc. (e.g. 1, 2, 3, etc.) This
means that you have a “blog-style” web site that shows multiple
articles on the home page, and multiple stories have footnotes, the
anchors will collide. The random option generates random anchor
numbers to dramatically reduce the offs of a collision.

multimarkdown --unique

The unique option uses a similar random number generator to
provide unique anchors (“labels”) for headers that do not have
a manually specified label. This prevents every “Introduction”
header in a textbook, for example, from having the identical label
#introduction. This reduces validation errors in HTML, ePub, and
LaTeX, and prevents collisions when using the {{TOC}} function.

multimarkdown --nosmart

Disable smart quotes (e.g. "foo" does not become �foo�).

multimarkdown --nolabels

Disables automatic generation of labels/anchors for headers.

multimarkdown --notransclude

Disables file transclusion that allows inserting the contents of a file
inside another file. See the section on File Transclusion (section) for
more information.

multimarkdown --opml

Allows MultiMarkdown to read an OPML13 source file. Outline 13 https://en.wikipedia.org/wiki/
OPMLProcessor Markup Language is an XML file format commonly used

for outliners and mind mapping programs. MultiMarkdown can
read/write to this format in addition to using regular plain text files.

multimarkdown --itmz

https://en.wikipedia.org/wiki/OPML
https://en.wikipedia.org/wiki/OPML
https://en.wikipedia.org/wiki/OPML

18 fletcher t. penney

Similar to OPML, ITMZ is an outlining format specific to the
iThoughts14 mind-mapping program. I added this format because: 14 https://www.toketaware.com/

1. iThoughts is my preferred mind-mapping tool

2. iThoughts supports OPML, but the support is (unfortunately)
limited. I was unable to convince the author of the benefits of
better read/write support for OPML.

3. Adding ITMZ support after adding OPML support wasn’t that
hard.

4. Adding ITMZ support to MultiMarkdown allows me to do some
interesting things in MultiMarkdown Composer, as well as in
other workflows. (More to come on that.)

Though I reluctantly added support for this format to MultiMark-
down, I will not be adding support for a laundry list of other for-
mats. Plain text and OPML should be enough. If the use of these
outline file formats for MultiMarkdown (or regular Markdown) con-
tinues to gain traction, then hopefully other developers will include
proper OPML support in their programs.

As an aside, the first use of this functionality came when I created
an export plug-in for OmniOutliner15 that created a plain Mark- 15 https://www.omnigroup.com/

omnioutliner/down/MultiMarkdown text file when exporting from an Omniout-
liner OPML file.

multimarkdown -t, multimarkdown --to=FORMAT

Specify the output format.

multimarkdown -o, multimarkdown --output=FILE

Specify the output file name.

multimarkdown -a, multimarkdown --accept

multimarkdown -r, multimarkdown --reject

Either accept or reject all proposed CriticMarkup16 changes con- 16 http://criticmarkup.com/

tained within the document before processing. It basically allows you
to output a “before” and an “after” version of a document containing
edits. If neither option is used, MultiMarkdown attempts to show
the edits in-line, but this is not always possible for poorly structured
edits. See the section on Criticmarkup17 for more information. 17 http://criticmarkup.com/

multimarkdown -l, multimarkdown --lang=LANG

Localize language/smart quotes for en, es, de, fr, he, nl,

sv. This can also be controlled via metadata.

https://www.toketaware.com/
https://www.toketaware.com/
https://www.omnigroup.com/omnioutliner/
https://www.omnigroup.com/omnioutliner/
https://www.omnigroup.com/omnioutliner/
http://criticmarkup.com/
http://criticmarkup.com/
http://criticmarkup.com/
http://criticmarkup.com/

multimarkdown user’s guide 19

multimarkdown -m, multimarkdown --metadata-keys

List all metadata keys contained in the document.

multimarkdown -e, multimarkdown --extract=KEY

Extract the value of a specified metadata key. This is useful for
custom scripts, for example.

Syntax

Abbreviations (or Acronyms)

NOTE: The syntax for abbreviations changed in MMD v6.
Abbreviations can be specified using inline or reference syntax.

The inline variant requires that the abbreviation be wrapped in
parentheses and immediately follows the >.

[>MMD] is an abbreviation. So is [>(MD) Markdown].

[>MMD]: MultiMarkdown

There is also a “shortcut” method for abbreviations that is simi-
lar to the approach used in prior versions of MMD. You specify the
definition for the abbreviation in the usual manner, but MMD will
automatically identify each instance where the abbreviation is used
and substitute it automatically. In this case, the abbreviation is lim-
ited to a more basic character set which includes letters, numbers,
periods, and hyphens, but not much else. For more complex abbrevi-
ations, you must explicitly mark uses of the abbreviation.

There are a few limitations:

• The full name of the abbreviation is plain text only – no Multi-
Markdown markup will be processed.

• When exporting to LaTeX, the acronym package is used; this means
that the first usage will result in full text (short), and subse-
quent uses will result in short.

Citations

I have included support for basic bibliography features in MultiMark-
down. I’m open to feedback on ways to improve this but keep the
following in mind:

1. Bibliography support in MultiMarkdown is rudimentary. The goal
is to offer a basic standalone feature, that can be changed using the
tool of your choice to a more robust format (e.g. BibTeX, CiteProc).

22 fletcher t. penney

2. Those needing more detailed function sets for their bibliographies
may need customized tools to provide those services. This is a
basic tool that should work for most people. Reference librarians,
for example, will probably not be satisfied.

To use citations in MultiMarkdown, you use a syntax much like
that for links:

This is a statement that should be attributed to

its source[p. 23][#Doe:2006].

And following is the description of the reference to be

used in the bibliography.

[#Doe:2006]: John Doe. *Some Big Fancy Book*. Vanity Press, 2006.

You are not required to use a locator (e.g. “p. 23”), and there are
no special rules on what can be used as a locator if you choose to use
one. If you prefer to omit the locator, just use an empty set of square
brackets before the citation:

This is a statement that should be attributed to its

source[][#Doe:2006].

There are no rules on the citation key format that you use (e.g.
Doe:2006), but it must be preceded by a #, just like footnotes use �.

As for the reference description, you can use Markup code within
this section, and I recommend leaving a blank line afterwards to
prevent concatenation of several references. Note that there is no way
to reformat these references in different bibliography styles; for this
you need a program designed for that purpose (e.g. BibTeX).

If you want to include a source in your bibliography that was not
cited, you may use the following:

[Not cited][#citekey]

The Not cited bit is case insensitive.
If you are creating a LaTeX document, the citations will be in-

cluded, and natbib will be used by default. If you are not using Bib-
TeX and are getting errors about your citations not being compatible
with ‘Author-Year’, you can add the following to your documents
metadata:

latex input: mmd-natbib-plain

This changes the citation style in natbib to avoid these errors, and
is useful when you include your citations in the MultiMarkdown
document itself.

multimarkdown user’s guide 23

NOTE: As of version 6, HTML wraps citation references in paren-
theses instead of brackets, e.g. (1) instead of [1]. Also, citations are
now displayed in a separate section from footnotes when outputting
to HTML.

Inline Citations

Citations can also be used in an inline syntax, just like inline foot-
notes:

As per Doe.[#John Doe. *A Totally Fake Book 1*. Vanity Press, 2006.]

BibTeX Citations

If you are creating a LaTeX document, and need a bibliography, then
you should definitely look into BibTeX18 and natbib19. It is beyond 18 http://www.bibtex.org/

19 http://merkel.zoneo.net/Latex/
natbib.php

the scope of this document to describe how these two packages work,
but it is possible to combine them with MultiMarkdown.

To use BibTeX in a MultiMarkdown document, you must use the
BibTeX metadata (subsection) to specify where your citations are
stored. You may optionally use the biblio style metadata key.

Since natbib is enabled by default, you have a choice between
using the \citep and \citet commands. The following shows how
this relates to the MultiMarkdown syntax used.

[#citekey] => ~\citep{citekey}

[#citekey][] => ~\citep{citekey}

[foo][#citekey] => ~\citep[foo]{citekey}

[foo\]\[bar][#citekey] => ~\citep[foo][bar]{citekey}

[#citekey;] => \citet{citekey}

[#citekey;][] => \citet{citekey}

[foo][#citekey;] => \citet[foo]{citekey}

[foo\]\[bar][#citekey;] => \citet[foo][bar]{citekey}

CriticMarkup

What Is CriticMarkup?

CriticMarkup is a way for authors and editors to track changes to doc-
uments in plain text. As with Markdown, small groups of distinctive

http://www.bibtex.org/
http://merkel.zoneo.net/Latex/natbib.php
http://www.bibtex.org/
http://merkel.zoneo.net/Latex/natbib.php
http://merkel.zoneo.net/Latex/natbib.php

24 fletcher t. penney

characters allow you to highlight insertions, deletions, substitutions
and comments, all without the overhead of heavy, proprietary office
suites. http://criticmarkup.com/

CriticMarkup is integrated with MultiMarkdown itself, as well
as MultiMarkdown Composer20. I encourage you to check out the 20 http://multimarkdown.com/

CriticMarkup21 web site to learn more as it can be a very useful 21 http://criticmarkup.com/

tool. There is also a great video showing CriticMarkup in use while
editing a document in MultiMarkdown Composer.

Using CriticMarkup With MultiMarkdown

When using CriticMarkup with MultiMarkdown itself, you have
three choices:

• Leave the CriticMarkup syntax in place (multimarkdown foo.txt).
MultiMarkdown will attempt to show the changes as highlights in
the exported document, where possible. This will not always result
in a valid output document.

• Accept all changes, giving you the “new” document (multimarkdown
-a foo.txt or multimarkdown --accept foo.txt)

• Reject all changes, giving you the “original” document (multimarkdown
-r foo.txt or multimarkdown --reject foo.txt)

• CriticMarkup comments and highlighting are ignored when pro-
cessing with --accept or --reject.

The CriticMarkup Syntax

The CriticMarkup syntax is fairly straightforward. The key thing to
remember is that CriticMarkup is processed before any other Multi-
Markdown is handled. It’s almost like a separate layer on top of the
MultiMarkdown syntax.

When editing in MultiMarkdown Composer, you can have Critic-
Markup syntax flagged in the both the editor pane and the preview
window. This will allow you to see changes in the HTML preview.

• Deletions from the original text:

This is {--is --}a test.

This is is a test.

• Additions:

This {++is ++}a test.

http://criticmarkup.com/
http://multimarkdown.com/
http://multimarkdown.com/
http://criticmarkup.com/
http://criticmarkup.com/

multimarkdown user’s guide 25

This is a test.

• Substitutions:

This {~~isn't~>is~~} a test.

This isn’tis a test.

• Highlighting:

This is a {==test==}.

This is a test.

• Comments:

This is a test{>>What is it a test of?<<}.

This is a test. What is it a test of?

CriticMarkup Limitations

If you --accept or --reject CriticMarkup changes, then it should
work properly in any document.

If you want to try to include your changes as “notes” in the fi-
nal document, then certain situations will lead to results that were
probably not what you intended.

1. CriticMarkup must be contained within a single block (e.g. para-
graph, list item, etc.) CM that spans multiple blocks will not be
recognized.

2. CriticMarkup that crosses multiple MMD spans (e.g. {++** foo}

bar**) will not properly manage the intended MultiMarkdown
markup. This example would not result in bold being applied to
foo bar.

My philosophy on CriticMarkup

I view CriticMarkup as two things (in addition to the actual tools that
implement these concepts):

1. A syntax for documenting editing notes and changes, and for
collaborating amongst coauthors.

2. A means to display those notes/changes in the HTML output.

26 fletcher t. penney

I believe that #1 is a really great idea, and well implemented. #2 is
not so well implemented, largely due to the “orthogonal” nature of
CriticMarkup and the underlying Markdown syntax.

CM is designed as a separate layer on top of Markdown/MultiMarkdown.
This means that a Markdown span could, for example, start in the
middle of a CriticMarkup structure, but end outside of it. This means
that an algorithm to properly convert a CM/Markdown document to
HTML would be quite complex, with a huge number of edge cases to
consider. I’ve tried a few (fairly creative, in my opinion) approaches,
but they didn’t work. Perhaps someone else will come up with a
better solution, or will be so interested that they put the work in to
create the complex algorithm. I have no current plans to do so.

Additionally, there is a philosophical distinction between docu-
menting editing notes, and using those notes to produce a “finished”
document (e.g. HTML or PDF) that keeps those editing notes intact
(e.g. strikethroughs, highlighting, etc.) I believe that CM is incredibly
useful for the editing process, but am less convinced for the output
process (I know many others disagree with me, and that’s ok. And
to be clear, I think that what Gabe and Erik have done with Critic-
Markup is fantastic!)

There are other CriticMarkup tools besides MultiMarkdown and
MultiMarkdown Composer22, and you are more than welcome to use 22 http://multimarkdown.com/

them.
For now, the official MultiMarkdown support for CriticMarkup

consists of:

1. CriticMarkup syntax is “understood” by the MultiMarkdown
parser, and by MultiMarkdown Composer syntax highlighting.

2. When converting from MultiMarkdown text to an output format,
you can ignore CM formatting with compatibility mode (prob-
ably not what you want to do), accept all changes, or reject all
changes (as above). These are the preferred choices.

3. The secondary choice, is to attempt to show the changes in the
exported document. Because the syntaxes are orthogonal, this will
not always work properly, and will not always give valid output
files.

Cross-References

An oft-requested feature was the ability to have Markdown automat-
ically handle within-document links as easily as it handled external
links. To this aim, I added the ability to interpret [Some Text][] as a
cross-link, if a header named “Some Text” exists.

http://multimarkdown.com/
http://multimarkdown.com/

multimarkdown user’s guide 27

As an example, [Metadata][] will take you to the section describ-
ing metadata (section).

Alternatively, you can include an optional label of your choosing
to help disambiguate cases where multiple headers have the same
title:

Overview [MultiMarkdownOverview]

This allows you to use [MultiMarkdownOverview] to refer to this
section specifically, and not another section named Overview. This
works with atx- or settext-style headers.

If you have already defined an anchor using the same id that is
used by a header, then the defined anchor takes precedence.

In addition to headers within the document, you can provide la-
bels for images and tables which can then be used for cross-references
as well.

Definition Lists

MultiMarkdown has support for definition lists using the same syn-
tax used in PHP Markdown Extra23. Specifically: 23 http://www.michelf.com/projects/

php-markdown/extra/

Apple

: Pomaceous fruit of plants of the genus Malus in

the family Rosaceae.

: An american computer company.

Orange

: The fruit of an evergreen tree of the genus Citrus.

becomes:

Apple Pomaceous fruit of plants of the genus Malus in the family
Rosaceae.

An american computer company.

Orange The fruit of an evergreen tree of the genus Citrus.

You can have more than one term per definition by placing each
term on a separate line. Each definition starts with a colon, and you
can have more than one definition per term. You may optionally have
a blank line between the last term and the first definition.

Definitions may contain other block level elements, such as lists,
blockquotes, or other definition lists.

Unlike PHP Markdown Extra, all definitions are wrapped in <p>

tags. First, I was unable to get Markdown not to create paragraphs.
Second, I didn’t see where it mattered - the only difference seems to

http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/

28 fletcher t. penney

be aesthetic, and I actually prefer the <p> tags in place. Let me know
if this is a problem.

See the PHP Markdown Extra24 page for more information. 24 http://www.michelf.com/projects/
php-markdown/extra/

Escaped newlines

Thanks to a contribution from Nicolas25, MultiMarkdown has an 25 https://github.com/njmsdk

additional syntax to indicate a line break. The usual approach for
Markdown is “space-space-newline” — two spaces at the end of the
line. For some users, this causes problems:

• the trailing spaces are typically invisible when glancing at the
source, making it easy to overlook them

• some users’ text editors modify trailing space (IMHO, the proper
fix for this is a new text editor. . .)

Nicolas submitted a patch that enables a new option that inter-
prets “\” before a newline as a marker that a line break should be
used:

This is a line.\

This is a new line.

Fenced Code Blocks

In addition to the regular indented code block that Markdown uses,
you can use “fenced” code blocks in MultiMarkdown. These code
blocks do not have to be indented, and can also be configured to be
compatible with a third party syntax highlighter. These code blocks
should begin with 3 to 5 backticks, an optional language specifier (if
using a syntax highlighter), and should end with the same number of
backticks you started with:

```perl

# Demonstrate Syntax Highlighting if you link to highlight.js #

# http://softwaremaniacs.org/soft/highlight/en/

print "Hello, world!\n";

$a = 0;

while ($a < 10) {

print "$a...\n";

$a++;

}

```

http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
https://github.com/njmsdk
https://github.com/njmsdk

multimarkdown user’s guide 29

Demonstra t e Syntax H i g h l i g h t i n g i f you l i n k t o h i g h l i g h t . j s
h t t p : / / s o f t w a r e m a n i a c s . o rg / s o f t / h i g h l i g h t / en /
print " Hello , world !\n" ;
$a = 0 ;
while ($a < 10) {
print " $a . . . \ n" ;
$a ++;
}

I don’t recommend any specific syntax highlighter, but have used
the following metadata to set things up. It may or may not work for
you:

html header: <link rel="stylesheet" href="http://yandex.st/highlightjs/7.3/styles/default.min.css">

<script src="http://yandex.st/highlightjs/7.3/highlight.min.js"></script>

<script>hljs.initHighlightingOnLoad();</script>

Fenced code blocks are particularly useful when including another
file (File Transclusion (section)), and you want to show the source of
the file, not what the file looks like when processed by MultiMark-
down.

NOTE: In MultiMarkdown v6, if there is no closing fence, then the
code block continues until the end of the document.

File Transclusion

File transclusion is the ability to tell MultiMarkdown to insert the
contents of another file inside the current file being processed. For
example:

This is some text.

{{some_other_file.txt}}

Another paragraph

If a file named some_other_file.txt exists, its contents will be
inserted inside of this document before being processed by Multi-
Markdown. This means that the contents of the file can also contain
MultiMarkdown formatted text.

If you want to display the contents of the file without processing it,
you can include it in a code block (you may need to remove trailing
newlines at the end of the document to be included):

This is some text

30 fletcher t. penney

```

{{relative/path/to/some_other_file.txt}}

```

Another paragraph

Transclusion is recursive, so the file being inserted will be scanned
to see if it references any other files.

Metadata in the file being inserted will be ignored. This means
that the file can contain certain metadata when viewed alone that will
not be included when the file is transcluded by another file.

You can use the [Transclude Base] metadata to specify where
MultiMarkdown should look for the files to be included. All files
must be in this folder. If this folder is not specified, then MultiMark-
down will look in the same folder as the parent file.

Note: Thanks to David Richards for his ideas in developing sup-
port for this feature.

Search Paths

When you process a file with MMD, it uses that file’s directory as the
search path for included files. For example:

Directory Transcluded Filename Resolved Path

/foo/bar/ bat /foo/bar/bat

/foo/bar/ baz/bat /foo/bar/baz/bat

/foo/bar/ ../bat /foo/bat

This is the same as MMD v 5. What’s different is that when you
transclude a file, the search path stays the same as the “parent” file,
UNLESS you use the transclude base metadata to override it. The
simplest override is:

transclude base: .

This means that any transclusions within the file will be calculated
relative to the file, regardless of the original search path.

Alternatively you could specify that any transclusion happens
inside a subfolder:

transclude base: folder/

Or you can specify an absolute path:

transclude base: /some/path

This flexibility means that you can transclude different files based
on whether a file is being processed by itself or as part of a “parent”
file. This can be useful when a particular file can either be a stan-
dalone document, or a chapter inside a larger document.

multimarkdown user’s guide 31

Wildcard Extensions

Sometimes you may wish to transclude alternate versions of a file
depending on your output format. Simply use the extension “.*”
to have MMD choose the proper version of the file (e.g. foo.tex,
foo.fodt, foo.html, etc.)

Insert a different version of a file here based on export format:

{{foo.*}}

Transclusion Preprocessing

If you want to perform transclusion, without converting to another
format, you can use mmd as the output format:

multimarkdown -t mmd foo.txt

This will only perform “basic” transclusion –it does not support
wildcard extensions, since the final output format is not known.

Footnotes

I have added support for footnotes to MultiMarkdown, using the
syntax proposed by John Gruber. Unfortunately, he never imple-
mented footnotes in Markdown.

To create a footnote, enter something like the following:

Here is some text containing a footnote.[^somesamplefootnote]

[^somesamplefootnote]: Here is the text of the footnote itself.

[somelink]:http://somelink.com

The footnote itself must be at the start of a line, just like links by
reference. If you want a footnote to have multiple paragraphs, lists,
etc., then the subsequent paragraphs need an extra tab preceding
them. You may have to experiment to get this just right, and please
let me know of any issues you find.

This is what the final result looks like:

Here is some text containing a footnote.26 26 Here is the text of the footnote itself.

You can also use “inline footnotes”:

Here is another footnote.[^This is the footnote itself]

32 fletcher t. penney

Glossaries

MultiMarkdown has a feature that allows footnotes to be specified
as glossary terms. It doesn’t do much for XHTML documents, but
the XSLT file that converts the document into LaTeX is designed to
convert these special footnotes into glossary entries.

NOTE: The syntax for glossary terms changed in MMD v6.
If there are terms in your document you wish to define in a glos-

sary at the end of your document, you can define them using the
glossary syntax.

Glossary terms can be specified using inline or reference syn-
tax. The inline variant requires that the abbreviation be wrapped in
parentheses and immediately follows the ?.

[?(glossary) The glossary collects information about important

terms used in your document] is a glossary term.

[?glossary] is also a glossary term.

[?glossary]: The glossary collects information about important

terms used in your document

Much like abbreviations, there is also a “shortcut” method that is
similar to the approach used in prior versions of MMD. You specify
the definition for the glossary term in the usual manner, but MMD
will automatically identify each instance where the term is used and
substitute it automatically. In this case, the term is limited to a more
basic character set which includes letters, numbers, periods, and
hyphens, but not much else. For more complex glossary terms, you
must explicitly mark uses of the term.

LaTeX Glossaries

Note: Getting glossaries to work is a slightly more advanced LaTeX feature,
and might take some trial and error the first few times.

Unfortunately, it takes an extra step to generate the glossary when
creating a pdf from a latex file:

1. You need to have the basic.gst file installed, which comes with
the memoir class.

2. You need to run a special makeindex command to generate the
.glo file: makeindex -s `kpsewhich basic.gst` -o "file-

name.gls" "filename.glo"

3. Then you run the usual pdflatex command again a few times.

multimarkdown user’s guide 33

Alternatively, you can use the code below to create an engine file
for TeXShop (it belongs in ∼/Library/TeXShop/Engines). You can
name it something like MemoirGlossary.engine. Then, when pro-
cessing a file that needs a glossary, you typeset your document once
with this engine, and then continue to process it normally with the
usual LaTeX engine. Your glossary should be compiled appropriately.
If you use TeXShop27, this is the way to go. 27 http://www.uoregon.edu/∼koch/

texshop/

#!/bin/

set path = ($path /usr/local/teTeX/bin/powerpc-apple-darwin-

current

/usr/local/bin) # This is actually a continuation of the line above

set basefile = `basename "$1" .tex`

makeindex -s `kpsewhich basic.gst` -o "${basefile}.gls" "${basefile}.glo"

Images

The basic syntax for images in Markdown is:

![Alt text](/path/to/img.jpg)

![Alt text](/path/to/img.jpg "Optional title")

![Alt text][id]

[id]: url/to/image "Optional title attribute"

In addition to the attributes you can use with links and images
(described in another section (section)), MultiMarkdown also adds a
few additional features. If an image is the only thing in a paragraph,
it is treated as a block level element:

This image (![Alt text](/path/to/img.jpg))

is different than the following image:

![Alt text](/path/to/img.jpg)

The resulting HTML is:

<p>This image ()

is different than the following image:</p>

http://www.uoregon.edu/~koch/texshop/
http://www.uoregon.edu/~koch/texshop/
http://www.uoregon.edu/~koch/texshop/

34 fletcher t. penney

<figure>

<figcaption>Alt text</figcaption>

</figure>

The first one would be an inline image. The second one (in HTML)
would be wrapped in an HTML figure element. In this case, the alt

text is also used as a figure caption, and can contain MultiMarkdown
syntax (e.g. bold, emph, etc.). The alt text is not specifically designed
to limit which MultiMarkdown is supported, but there will be limits
and block level elements aren’t supported.

Link and Image Attributes

Adding attributes to links and images has been requested for a long
time on the Markdown discussion list. I was fairly opposed to this, as
most of the proposals really disrupted the readability of the syntax.
I consider myself a “Markdown purist”, meaning that I took John’s
introduction to heart:

The overriding design goal for Markdown’s formatting syntax is
to make it as readable as possible. The idea is that a Markdown-
formatted document should be publishable as-is, as plain text, without
looking like it’s been marked up with tags or formatting instructions.
While Markdown’s syntax has been influenced by several existing
text-to-HTML filters, the single biggest source of inspiration for Mark-
down’s syntax is the format of plain text email.

Because there was not a syntax proposal that I felt fit this goal, I
was generally opposed to the idea.

Then, Choan C. Gálvez proposed28 a brilliantly simple syntax that 28 http://six.pairlist.net/pipermail/
markdown-discuss/2005-October/
001578.html

stayed out of the way. By simply appending the attributes to the link
reference information, which is already removed from the text itself,
it doesn’t disturb the readability.

For example:

This is a formatted ![image][] and a [link][] with attributes.

[image]: http://path.to/image "Image title" width=40px height=400px

[link]: http://path.to/link.html "Some Link" class=external

style="border: solid black 1px;"

This will generate width and height attributes for the image, and
a border around the link. And while it can be argued that it does
look “like it’s been marked up with tags [and] formatting instruc-
tions”, even I can’t argue too strongly against it. The link and the
title in quotes already look like some form of markup, and the the

http://six.pairlist.net/pipermail/markdown-discuss/2005-October/001578.html
http://six.pairlist.net/pipermail/markdown-discuss/2005-October/001578.html
http://six.pairlist.net/pipermail/markdown-discuss/2005-October/001578.html
http://six.pairlist.net/pipermail/markdown-discuss/2005-October/001578.html

multimarkdown user’s guide 35

additional tags are hardly that intrusive, and they offer a great deal
of functionality. They might even be useful in further functions (cita-
tions?).

The attributes must continue after the other link/image data, and
may contain newlines, but must start at the beginning of the line.
The format is attribute=value or attribute="multi word value".
Currently, MultiMarkdown does not attempt to interpret or make
any use of any of these attributes. Also, you can’t have a multiword
attribute span a newline.

NOTE: As of version 6, MultiMarkdown will also allow attributes
in inline links as well:

Colored [link](http://example.net "Title" style="color:red")

Math

MultiMarkdown 2.0 used ASCIIMathML29 to typeset mathematical 29 http://www1.chapman.edu/
∼jipsen/mathml/asciimath.htmlequations. There were benefits to using ASCIIMathML, but also some

disadvantages.
When rewriting for MultiMarkdown 3.0, there was no straightfor-

ward way to implement ASCIIMathML which lead me to look for
alternatives. I settled on using MathJax30. The advantage here is that 30 http://www.mathjax.org/

the same syntax is supported by MathJax in browsers, and in native
LaTeX syntax when creating LaTeX documents.

To enable MathJax support in web pages, you have to include a
link to an active MathJax installation — setting this up is beyond the
scope of this document, but it’s not too hard.

Here’s an example of the metadata setup, and some math:

latex input: mmd-article-header

Title: MultiMarkdown Math Example

latex input: mmd-article-begin-doc

latex footer: mmd-memoir-footer

HTML header: <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2/MathJax.js?config=TeX-

AMS-MML_HTMLorMML"></script>

An example of math within a paragraph --- \\({e}^{i\pi }+1=0\\)

--- easy enough.

And an equation on it's own:

\\[{x}_{1,2}=\frac{-b\pm \sqrt{{b}^{2}-4ac}}{2a} \\]

That's it.

http://www1.chapman.edu/~jipsen/mathml/asciimath.html
http://www1.chapman.edu/~jipsen/mathml/asciimath.html
http://www1.chapman.edu/~jipsen/mathml/asciimath.html
http://www.mathjax.org/
http://www.mathjax.org/

36 fletcher t. penney

Here’s what it looks like in action (if you’re viewing this document
in a supported format):

An example of math within a paragraph — eiπ + 1 = 0 — easy enough.

And an equation on it’s own:

x1,2 =
−b ±

√
b2 − 4ac

2a

That’s it.

In addition to the \\[\\] and \\(\\) syntax, you can use
LaTeX-style “dollar sign” delimiters:

An example of math within a paragraph --- ${e}^{i\pi }+1=0$

--- easy enough.

And an equation on it's own:

$${x}_{1,2}=\frac{-b\pm \sqrt{{b}^{2}-4ac}}{2a}$$

That's it.

In order to be correctly parsed as math, there must not be any
space between the $ and the actual math on the inside of the delim-
iter, and there must be space on the outside. ASCII punctuation can
also serve as “space” outside of the math.

Superscripts and Subscripts

You can easily include superscripts and subscripts in MultiMark-
down as well:

This apartment has an area of 100m^2

One must consider the value of x~z

becomes

This apartment has an area of 100m2

One must consider the value of xz

The subscript must not contain any whitespace or punctuation.
More complicated exponents and subscripts can be delimited like

this:

y^(a+b)^

x~y,z~

y(a+b)

xy,z

multimarkdown user’s guide 37

Metadata

It is possible to include special metadata at the top of a MultiMark-
down document, such as title, author, etc. This information can then
be used to control how MultiMarkdown processes the document, or
can be used in certain output formats in special ways. For example:

Title: A Sample MultiMarkdown Document

Author: Fletcher T. Penney

Date: February 9, 2011

Comment: This is a comment intended to demonstrate

metadata that spans multiple lines, yet

is treated as a single value.

CSS: http://example.com/standard.css

The syntax for including metadata is simple.

• The metadata must begin at the very top of the document - no
blank lines can precede it. There can optionally be a --- on the
line before and after the metadata. The line after the metadata can
also be This is to provide better compatibility with YAML31, 31 http://www.yaml.org/

though MultiMarkdown doesn’t support all YAML metadata.

• Metadata consists of two parts - the key and the value

• The metadata key must begin at the beginning of the line. It must
start with an ASCII letter or a number, then the following char-
acters can consist of ASCII letters, numbers, spaces, hyphens, or
underscore characters.

• The end of the metadata key is specified with a colon (‘:’)

• After the colon comes the metadata value, which can consist of
pretty much any characters (including new lines). To keep multi-
line metadata values from being confused with additional meta-
data, I recommend indenting each new line of metadata. If your
metadata value includes a colon, it must be indented to keep it
from being treated as a new key-value pair.

• While not required, I recommend using two spaces at the end of
each line of metadata. This will improve the appearance of the
metadata section if your document is processed by Markdown
instead of MultiMarkdown.

• Metadata keys are case insensitive and stripped of all spaces dur-
ing processing. This means that Base Header Level, base head-

erlevel, and baseheaderlevel are all the same.

http://www.yaml.org/
http://www.yaml.org/

38 fletcher t. penney

• Metadata is processed as plain text, so it should not include Multi-
Markdown markup.

• After the metadata is finished, a blank line triggers the beginning
of the rest of the document.

Metadata “Variables”

You can substitute the value for a metadata key in the body of a
document using the following format, where foo and bar are the
keys of the desired metadata.

foo: foo-test

bar: bar-test

A Variable in a Heading [%foo]

A variable in the body [%bar].

“Standard” Metadata keys

There are a few metadata keys that are standardized in MultiMark-
down. You can use any other keys that you desire, but you have to
make use of them yourself.

My goal is to keep the list of “standard” metadata keys as short as
possible.

Author

This value represents the author of the document and is used in
LaTeX, ODF, and RTF documents to generate the title information.

Affiliation

This is used to enter further information about the author — a link to
a website, the name of an employer, academic affiliation, etc.

Base Header Level

This is used to change the top level of organization of the document.
For example:

Base Header Level: 2

Introduction

multimarkdown user’s guide 39

Normally, the Introduction would be output as <h1> in HTML,
or \part{} in LaTeX. If you’re writing a shorter document, you may
wish for the largest division in the document to be <h2> or \chap-
ter{}. The Base Header Level metadata tells MultiMarkdown to
change the largest division level to the specified value.

This can also be useful when using transclusion to combine multi-
ple documents.

Base Header Level does not trigger a complete document.
Additionally, there are “flavors” of this metadata key for various

output formats so that you can specify a different header level for
different output formats — e.g. LaTeX Header Level, HTML Header

Level, and ODF Header Level.
If you are doing something interesting with File Transclusion

(section), you can also use a negative number here. Since metadata
is not used when a file is “transcluded”, this allows you to use a
different level of headings when a file is processed on its own.

Biblio Style

This metadata specifies the name of the BibTeX style to be used, if
you are not using natbib.

BibTeX

This metadata specifies the name of the BibTeX file used to store
citation information. Do not include the trailing ‘.bib’.

Copyright

This can be used to provide a copyright string.

CSS

This metadata specifies a URL to be used as a CSS file for the pro-
duced document. Obviously, this is only useful when outputting to
HTML.

Date

Specify a date to be associated with the document.

HTML Header

You can include raw HTML information to be included in the <head>

section of the document. MultiMarkdown doesn’t perform any vali-
dation or processing of this data — it just copies it as is.

40 fletcher t. penney

As an example, this can be useful to link your document to a
working MathJax installation (not provided by me):

HTML header: <script type="text/javascript"

src="http://example.net/mathjax/MathJax.js">

</script>

HTML Footer

Raw HTML can be included here, and will be appended at the very
end of the document, after footnotes, etc. Useful for linking to scripts
that must be included after footnotes.

Language

The language metadata key specified the content language for a doc-
ument using the standardized two letter code (e.g. en for English).
Where possible, this will also set the quotes language metadata key
to the appropriate value.

LaTeX Author

Since MultiMarkdown syntax is not processed inside of metadata,
you can use the latex author metadata to override the regular au-
thor metadata when exporting to LaTeX.

This metadata must come after the regular author metadata if it is
also being used.

LaTeX Begin

This is the name of a LaTeX file to be included (via \input{foo})
when exporting to LaTeX. This file will be included after the meta-
data, and before the body of the document. This is usually where the
\begin{document} command occurs, hence the name.

LaTeX Config

This is a shortcut key when exporting to LaTeX that automatically
populates the latex leader, latex begin, and latex footer meta-
data based on a standardized naming convention.

latex config: article would be the same as the following
setup:

latex leader: mmd6-article-leader

latex begin: mmd6-article-begin

latex footer: mmd6-article-footer

multimarkdown user’s guide 41

The standard LaTeX support files have been updated to support
this naming configuration:

https://github.com/fletcher/MultiMarkdown-6/tree/master/
texmf/tex/latex/mmd6

LaTeX Footer

The name of a file to be included at the end of a LaTeX document.

LaTeX Header

Raw LaTeX source to be added to the metadata section of the docu-
ment. Note: This is distinct from the latex leader, latex begin,
and latex footer metadata which can only contain a filename.

LaTeX Leader

The name of a file to be included at the very beginning of a LaTeX
document, before the metadata.

LaTeX Mode

When outputting a document to LaTeX, there are two special options
that change the output slightly — memoir and beamer. These options
are designed to be compatible with the LaTeX classes of the same
names.

LaTeX Title

Since MultiMarkdown syntax is not processed inside of metadata,
you can use the latex title metadata to override the regular title
metadata when exporting to LaTeX.

This metadata must come after the regular title metadata if it is
also being used.

MMD Header

MMD Header provides text that will be inserted before the main body
of text, prior to parsing the document. If you want to include an
external file, use the transclusion syntax ({{foo.txt}}).

MMD Footer

The MMD Footer metadata is like MMD Header, but it appends text at
the end of the document, prior to parsing. Use transclusion if you
want to reference an external file.

https://github.com/fletcher/MultiMarkdown-6/tree/master/texmf/tex/latex/mmd6
https://github.com/fletcher/MultiMarkdown-6/tree/master/texmf/tex/latex/mmd6

42 fletcher t. penney

This is useful for keeping a list of references, abbreviations, foot-
notes, links, etc. all in a single file that can be reused across multiple
documents. If you’re building a big document out of smaller doc-
uments, this allows you to use one list in all files, without multiple
copies being inserted in the master file.

ODF Header

You can include raw XML to be included in the header of a file out-
put in OpenDocument format. It’s up to you to properly format your
XML and get it working — MultiMarkdown just copies it verbatim to
the output.

Quotes Language

This is used to specify which style of “smart” quotes to use in the
output document. The available options are:

• dutch (or nl)

• english (en)

• french (fr)

• german (de)

• germanguillemets

• spanish (es)

• swedish (sv)

The default is english if not specified. This affects HTML output.
To change the language of a document in LaTeX is up to the individ-
ual.

Quotes Language does not trigger a complete document.

Title

Self-explanatory.

Transclude Base

When using the File Transclusion (section) feature to “link” to other
documents inside a MultiMarkdown document, this metadata spec-
ifies a folder that contains the files being linked to. If omitted, the
default is the folder containing the file in question. This can be a
relative path or a complete path.

multimarkdown user’s guide 43

This metadata can be particularly useful when using MultiMark-
down to parse a text string that does not exist as a file on the com-
puter, and therefore does not have a parent folder (when using stdin

or another application that offers MultiMarkdown support). In this
case, the path must be a complete path.

Raw Source

In older versions of MultiMarkdown you could use an HTML com-
ment to pass raw LaTeX or other content to the final document. This
worked reasonably well, but was limited and didn’t work well when
exporting to multiple formats. It was time for something new.

MMD v6 offers a new feature to handle this. Code spans and code
blocks can be flagged as representing raw source:

foo `*bar*`{=html}

```{=latex}

*foo*

```

The contents of the span/block will be passed through unchanged.
You can specify which output format is compatible with the speci-

fied source:

• html

• odt

• epub

• latex

• * – wildcard matches any output format

Smart Typography

MultiMarkdown incorporates John Gruber’s SmartyPants32 tool in 32 http://daringfireball.net/projects/
smartypants/addition to the core Markdown functionality. This program converts

“plain” punctuation into “smarter” typographic punctuation.
Just like the original, MultiMarkdown converts:

• Straight quotes (" and ') into “curly” quotes

• Backticks-style quotes (�this�) into “curly” quotes

• Dashes (-- and ---) into en- and em- dashes

http://daringfireball.net/projects/smartypants/
http://daringfireball.net/projects/smartypants/
http://daringfireball.net/projects/smartypants/

44 fletcher t. penney

• Three dots (...) become an ellipsis

MultiMarkdown also includes support for quotes styles other than
English (the default). Use the quotes language metadata to choose:

• dutch (nl)

• german(de)

• germanguillemets

• french(fr)

• spanish(en)

• swedish(sv)

This feature is enabled by default, but is disabled in compatibil-

ity mode, since it is not part of the original Markdown. You can also
use the --nosmart command line option to disable this feature.

Table of Contents

As of version 4.7, MultiMarkdown supports the use of {{TOC}} to
insert a Table of Contents in the document. This is automatically
generated from the headers included in the document.

When possible, MultiMarkdown uses the “native” TOC for a given
output format. For example, \tableofcontents when exporting to
LaTeX.

As of version 6.5, MultiMarkdown also supports two additional
versions:

• TOC:2 – this limits the TOC to “level 2” entries

• TOC:2-3 – this limts the TOC to levels 2 and 3

Tables

Table Basics

MultiMarkdown has a special syntax for creating tables. It is gen-
erally compatible with the syntax used by Michael Fortin for PHP
Markdown Extra33 33 http://www.michelf.com/projects/

php-markdown/extra/Basically, it allows you to turn:

| | Grouping ||

First Header | Second Header | Third Header |

http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/

multimarkdown user’s guide 45

------------ | :-----------: | -----------: |

Content | *Long Cell* ||

Content | **Cell** | Cell |

New section | More | Data |

And more | With an escaped '\|' ||

[Prototype table]

into the following table (subsection 1).

Grouping
First Header Second Header Third Header

Content Long Cell
Content Cell Cell

New section More Data
And more With an escaped ‘|’

Table 1: Prototype table

Table Rules

The requirements are:

• There must be at least one | per line

• The “separator” line between headers and table content must
contain only |,-, =, :,., +, or spaces

• Cell content must be on one line only

• Columns are separated by |

• The first line of the table, and the alignment/divider line, must
start at the beginning of the line

Other notes:

• It is optional whether you have | characters at the beginning and
end of lines.

• The “separator” line uses --� or ==== to indicate the line between
a header and cell. The length of the line doesn’t matter, but must
have at least one character per cell.

• To set alignment, you can use a colon to designate left or right
alignment, or a colon at each end to designate center alignment,
as above. If no colon is present, the default alignment of your
system is selected (left in most cases). If the separator line ends
with +, then cells in that column will be wrapped when exporting
to LaTeX if they are long enough.

46 fletcher t. penney

• To indicate that a cell should span multiple columns, then simply
add additional pipes (|) at the end of the cell, as shown in the
example. If the cell in question is at the end of the row, then of
course that means that pipes are not optional at the end of that
row. . . . The number of pipes equals the number of columns the
cell should span.

• You can use normal Markdown markup within the table cells.

• Captions are optional, but if present must be at the beginning of
the line immediately following the table, start with [, and end
with]. If you have a caption before and after the table, only the
first match will be used.

• If you have a caption, you can also have a label, allowing you to
create anchors pointing to the table. If there is no label, then the
caption acts as the label

• Cells can be empty.

• You can create multiple <tbody> tags (for HTML) within a table by
having a single empty line between rows of the table. This allows
your CSS to place horizontal borders to emphasize different sec-
tions of the table. This feature doesn’t work in all output formats
(e.g. RTF and OpenDocument).

Limitations of Tables

• MultiMarkdown table support is designed to handle most tables
for most people; it doesn’t cover all tables for all people. If you
need complex tables you will need to create them by hand or with
a tool specifically designed for your output format. At some point,
however, you should consider whether a table is really the best
approach if you find MultiMarkdown tables too limiting.

• Native RTF support for tables is very limited. If you need more
complex tables, I recommend using the OpenDocument format,
and then using LibreOffice34 to convert your document to RTF. 34 http://www.libreoffice.org/

http://www.libreoffice.org/
http://www.libreoffice.org/

File Formats

Plain Text

The most common file format for containing Markdown/MultiMarkdown
text is a plain text file. There is nothing special about these files,
though things do tend to work best using:

• UTF-8 encoding

• UNIX-style line endings (\n)

I’ve tried to make MultiMarkdown as forgiving as possible when
alternatives are used, but if you’re having trouble with specific files,
this can be a place to start.

OPML

OPML35, or Outline Processor Markup Language, is an XML file 35 https://en.wikipedia.org/wiki/
OPMLformat used for storing outlines. This fits well with the idea of a

Markdown document containing multiple levels of headers that
provide structure to the document, such as:

Introduction

Historical Background

Current State

Technical Issues

Production Capacity

Resolution Limits

etc.

MultiMarkdown has had support for OPML for many years (al-
most as long as MultiMarkdown has been around), but the support
in v6 is improved. Not only is OPML one of the output formats (al-
lowing conversion of plain text into an OPML file), but MultiMark-
down can now read directly from an OPML file in order to convert to
something else:

https://en.wikipedia.org/wiki/OPML
https://en.wikipedia.org/wiki/OPML
https://en.wikipedia.org/wiki/OPML

48 fletcher t. penney

multimarkdown --opml file.opml > file.html

This means that you can work on your document using an editor
that supports OPML (e.g. MultiMarkdown Composer36), or you 36 https://multimarkdown.com/

can use an outliner or mind-mapping program that supports OPML
(most of them do, to varying degrees). When you’re ready to publish
your work, you can simply process it like normal to create HTML,
LaTeX, etc.

An advantage of this approach is that you can easily rearrange the
structure of your document by dragging and dropping sections of
the outline. (While not a full features outlining program, MultiMark-
down Composer allows you to do this as well.)

ITMZ

ITMZ is the file format used by the iThoughts37 line of mind-mapping 37 https://www.toketaware.com/

programs. It is similar to the OPML format, but is a compressed bun-
dle format rather than a plain text XML file.

Advanced Use

A key reason for the inclusion of the ITMZ format is to demonstrate
the functionality provided by tightly coupling the idea of a text editor
and an outliner/mind-mapping program.

For example, version 4.5 of MultiMarkdown Composer will in-
clude read/write support for both OPML and ITMZ as native doc-
ument formats. Which means that you can work on a Markdown/
MultiMarkdown document in Composer, while simultaneously open-
ing the same ITMZ in iThoughts as a mind-map (or OPML as an
outline in OmniOutliner.) Which means that you quickly switch
applications to view (or rearrange) the overall structure of your doc-
ument in a visual program (outliner, mind-mapping) while using a
text-based editor for writing the content.

https://multimarkdown.com/
https://multimarkdown.com/
https://www.toketaware.com/
https://www.toketaware.com/

multimarkdown user’s guide 49

Figure 1: Example of advanced use of
the ITMZ format

Glossary

glossary The glossary collects information about important terms
used in your document. 32

Abbreviations

MMD MultiMarkdown. 11, 12, 15, 21, 25, 30–32, 43

	MultiMarkdown User's Guide
	Introduction
	What is Markdown?
	What is MultiMarkdown?
	Why should I use MultiMarkdown?
	What Are the Different Versions of MultiMarkdown?
	Where is this Guide Kept?

	Usage
	Basic Command Line Usage
	Batch Mode
	Transclusion Only
	Convenience Scripts
	Advanced Options

	Syntax
	Abbreviations (or Acronyms)
	Citations
	CriticMarkup
	Cross-References
	Definition Lists
	Escaped newlines
	Fenced Code Blocks
	File Transclusion
	Footnotes
	Glossaries
	Images
	Link and Image Attributes
	Math
	Metadata
	Metadata ``Variables''
	``Standard'' Metadata keys
	Raw Source
	Smart Typography
	Table of Contents
	Tables

	File Formats
	Plain Text
	OPML
	ITMZ
	Advanced Use

	Glossary
	Abbreviations

